KELLER: estimating time-varying interactions between genes

نویسندگان

  • Le Song
  • Mladen Kolar
  • Eric P. Xing
چکیده

MOTIVATION Gene regulatory networks underlying temporal processes, such as the cell cycle or the life cycle of an organism, can exhibit significant topological changes to facilitate the underlying dynamic regulatory functions. Thus, it is essential to develop methods that capture the temporal evolution of the regulatory networks. These methods will be an enabling first step for studying the driving forces underlying the dynamic gene regulation circuitry and predicting the future network structures in response to internal and external stimuli. RESULTS We introduce a kernel-reweighted logistic regression method (KELLER) for reverse engineering the dynamic interactions between genes based on their time series of expression values. We apply the proposed method to estimate the latent sequence of temporal rewiring networks of 588 genes involved in the developmental process during the life cycle of Drosophila melanogaster. Our results offer the first glimpse into the temporal evolution of gene networks in a living organism during its full developmental course. Our results also show that many genes exhibit distinctive functions at different stages along the developmental cycle. AVAILABILITY Source codes and relevant data will be made available at http://www.sailing.cs.cmu.edu/keller.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cross-Sectional Relative Price Variability and Inflation in Turkey: Time Varying Estimation

Abstract This study investigates the empirical validity of the variability hypothesis in Turkey for the period of February 2005-November 2015, by using cross-sectional relative price data and by focusing on the assumptions of linearity and stability. The linearity assumption between the two variables is ensured by estimating quadratic regression equation. The assumption of stability is secur...

متن کامل

Semi-parametric Methods for Estimating Time-varying Graph Structure

Stochastic networks are a plausible representation of the relational information among entities in dynamic systems such as living cells or social communities. While there is a rich literature in estimating a static or temporally invariant network from observation data, little has been done towards estimating time-varying networks from time series of entity attributes. In this paper, we present ...

متن کامل

Estimating time-varying networks

Stochastic networks are a plausible representation of the relational information among entities in dynamic systems such as living cells or social communities. While there is a rich literature in estimating a static or temporally invariant network from observation data, little has been done toward estimating time-varying networks from time series of entity attributes. In this paper we present tw...

متن کامل

A Robust Adaptive Observer-Based Time Varying Fault Estimation

This paper presents a new observer design methodology for a time varying actuator fault estimation. A new linear matrix inequality (LMI) design algorithm is developed to tackle the limitations (e.g. equality constraint and robustness problems) of the well known so called fast adaptive fault estimation observer (FAFE). The FAFE is capable of estimating a wide range of time-varying actuator fault...

متن کامل

Differential Expression of Alpha S1 Casein and Beta-Lactoglobulin Genes at Different Physiological stages of the Adani Goats Mammary Glands

Background: Milk proteins genes have been the focus of the researches as the candidate target genes that play a decisive role when animal breeding is desired.Objectives: In the present study, the transcriptional levels of Beta-lactoglobulin (BLG) and Alpha S1 casein (CSN1S1) genes were investigated during prenatal, milking and drying times in mammary glands of the Adani goats which showed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioinformatics

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2009